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1.0 INTRODUCTION

This report describes the work performed for the National Highway Traffic
Safety Administration under Contract flo. DOT-HS-031-2-382, entitled, "Door
Crashworthiness Criteria."”

In the performance of this study, the Contractor was required to
perform the following tasks within the limits of time and funds available:

1. The Contractor shall perform with yielding and padded surfaces side
impacts to the heads of sub-human primates and to human cadavers so that the
data generated will validate a human tolerance curve for those impacts whose
duration exceeds ten milliseconds.

2. The Contractor shall perform side impacts to the torsos of sub-
human primates and to human cadavers so that the data generated will permit
the development and validation of a suitable mechanical model that will sig-
nificantly improve the accuracy of extrapolating thi1s data to humans. The
end products will be appropriate and validated human tolerance curves for
various types of side impacts to the torso that would be expected to occur
1n side impacts to motor vehicles.

1.1 SIDE IMPACTS IW HIGHWAY SAFETY

The National Safety Council and the Bureau of Public Roads' statistics
on auto accidents indicate that in the United States 6,000 people die every
year from injuries sustained in side collisions (Green, 1973). According
to the Automotive Crash Injury Research (ACIR) project at Calspan (1967),
side collisions accounted for 13.3% of all injury producing accidents, but
were responsible for 18.5% of the dangerous or fatal injuries (Green, 1973).
These facts clearly demonstrate the need for thorough research into all aspects

of side collisions.



1.2 CURRENT RESEARCH KNOWLEDGE

There is a considerable Tack of factual knowledge involving human
response to lateral (tGy) acceleration forces. A large number of studies
have been made on impact tolerance involving vertical, forward or rearward
accelerations but relatively few have been conducted for lateral accelerations.
Most of these studies used restraint systems which were considerably different
from those provided in today's automobiles.

Tests utilizing baboons as subjects (Snyder, et. al., 1967) resulted
in findings which indicate that at every level of impact studied (15 to 44 G)
there were significantly greater injuries in lateral impacts than in forward
impacts. These tests, unlike the earlier ones conducted with bears (Clarke,
1962), chimpanzees (Stapp, 1952, 1955), and Rhesus monkeys (Robinson, 1963),
were conducted with the minimal restraint of a lap belt and their results
may have greater significance to the lap belted human automobile occupant.
Five animals received ruptured bladders, contusions, tears, lacerations or
completely severed uteruses. The ruptured bladders were reported in the
Tateral impact cases only. In addition, three of the lateral impacts
caused cervical fractures and a complete atlanto-occipital separation and
transection of the spinal chord occured in one 30 G impact. A very sig-
nificant, though quite unexpected, finding was that of pancreatic hemorrhage in
all lateral cases autopsied. Subsequent investigations were conducted on
baboon subjects exposed to lateral impact wearing 3 point, Y-yoke, gr a
European type upper torso single diagonal belt (Snyder, et. al., 1968b, 1967a).

Human volunteer lateral impact tests have been conducted by Clarke (1963),
Weiss (1963), Chandler (1966), Reader (1967), and Payne (1961). They used various
sophisticated restraint systems and report no injuries for sled accelerations

up to 18.7 G's.



There apparently has been only one published study involving impact
tolerances of the human while restrained by lap belt only. In 1963,
Zaborowski, Rothstein, and Brown published the first medical investigation
of humans (restrained by lap belt only) in lateral impacts. These impacts
had to be discontinued at 9 G (with impact durations of 0.1 sec) due "to
subject d{scomfort with prolonged stiffness and soreness in the neck muscula-
ture." Fifty percent of the subjects complained of physical discomfort at
6 G.

A more recent study of more than 100 lateral impacts at 9.2 to 10.0
sled G (12 to 14 chest G) is still unpublished (Sonntag, 1966). One
subject fainted and another subject received severe neck muscle strain. In
other tests of human volunteer tolerance in side impact, from 18 to 92°
body orientation (from the forward facing position), Beeding (1958) has reported

effects of chest pains, headaches up to 18 hours, brief disorientation, or

difficult breathing, a single case of mild ischemia, hyoid dislocation, shock,
and albuminucia. In another test, zero blood pressure was recorded im-
mediately post run in one subject.

The physiological effects of lateral impact as found from both human
and animal impact tolerance research studies have been summarized by Eiband
(1965), Snyder (1966, 1969b) and by Stapp (1968, 1969). Results to date
indicate that the human body is less tolerant to iGy accelerative forces than
to either tGX or iGZ accelerations.

In 1971, a coordinated effort to determine human tolerance to lateral
impact was undertaken at the Highway Safety Research Institute of The University
of Michigan. That study, entitled "Door Crashworthiness Criteria," (Stalnaker

and McElhaney, 1971) was the immediate predecessor of the present study.



This earlier study consisted of 45 short duration side head impacts, 13
impacts to the upper abdomen, 7 to the thorax and 15 whole body impacts.
A11 subjects were living infra-human primates. One human cadaver side head
impact was also conducted. A1l impacts were conducted under conditions
specifically designed to simulate those of an automobile side collision.

In conjunction with the above mentioned impact studies, a quantitative
model for side head impacts was developed. Parameters were determined so
that side head impacts to infra-human primates could be scaled to analogous
impacts to living humans.

The present study incorporates most of the data of the earlier study.

In addition, side head impacts were conducted on human cadavers and on living
infra-human primates. The cadaver impacts were coordinated with the animal
jmpacts so that the combined data could be used to construct a matrix which
would represent the behavior of a living human in a side head impact. This
was accomplished by combining the mechanical response information from the
cadaver impacts with the physiological response information from the animal
impacts.

The response of the infra-human primates to head impacts is very similar
to that of a living human. The important differences are evident in the
mechanical behavior of the system studied and arise from differences in
size and proportion of the subjects. The human cadaver side impacts are used to
provide accurate information about the mechanical behavior of the living human.

The first door crashworthiness study did not provide sufficient
data for analysis of problems in the following areas: long duration head
impacts, impacts to the thorax, and impacts to the lower abdomen. This study

complements the previous one by providing data in the above mentioned areas.



2.0 EXPERIMENTAL STUDIES

2.1 INTRODUCTION

During the contract FH-11-7288, 1971, "Door Crashworthiness Criteria,"
a substantial amount of experimental injury data was generated. Accident
data for motor vehicles involved in side impacts indicate that most occupant deaths
were due at least in part, to head injuries suffered when the head struck
windows, door pillars, and other rigid objects. Therefore, most of this data
was generated by impacts to the head of short duration against unyielding
surfaces. This data was extrapolated to man by use of dimensional analysis
and the theory of modeling. These results were then presented as tolerance
curves generated by the Maximum Strain Criterion (MSC) for head injury.

The torso side impact injuries were produced by a blunt wedge shaped
impactor simulating an arm rest, and a large flat impactor that contacted
the animal over the whole torso. The results of the blunt wedge impacts
were presented as curves of the average peak contact pressure (computed by
dividing the peak impactor force by the maximum projected impactor contact
area at maximum penetration) and impactor velocity versus the injury
levels. It should be noted that the slopes of these curves were small,
indicating that only small changes in either contact pressure or impactor
velocity greatly changed the injury level. The depth of penetration of the
impactor was also found to be an important variable in determining tolerance
levels.

Dimensional analysis of this data did not produce an identifiable
pattern for torso injury criteria owing to the lack of a suitable torso
injury model. In the present experimental study, the data base was expanded

for the head injury criterion and the torso.
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Five primates {Figure 1) were considered for these tests:

1. Saimiri sciurius squirrel monkey [SM]

2. Macaca mulatta Rhesus monkey [RH]

w
O
[=7]

4. Pan satyrus chimpanzee [CH]

[$2]

Homo sapiens man (cadaver [MA]

in the side head impact experiments in either this

Baboons were not use
study or the 1971 "Door Crashworthiness Criteria" (DCC) report because of
large differences in the shape and the dynamic response of human and baboon
heads. A1l the other species used in the head impact study fit the human
Maximum Strain Criterion head model developed by Stalnaker and McElhaney
(1970, 1971). Chimpanzees were not used in the torso impact tests because of
their unavailability in large numbers.

A1l test animals were housed in the Biomedical Laboratory Vivarium in the
Highway Safety Research Institute for a minimum of two days. During this
time the animals were examined and their physical condition recorded. This
pre-impact physical condition was used as the basis for comparison with the
post-impact condition to evaluate the extent of injury.

The animal to be tested was anesthetized with 30 mg/kg of Vetalar [dl
2-(0-chlorophenyl)-2-(methylamino) cyclohexanone Hydrochloride)]. This drug
is a rapid-acting general anesthetic which produces a state characterized by
profound analgesia, normal pharyngeal-laryngeal reflexes and normal or slightly
enhanced skeletal muscle tone. With this drug the post impact state of consciousness
can be determined. The good muscle tone provided by this drug made the test
condidtions more realistic and representative of the responses of the

alert animal.
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The radiographic laboratory, vivarium, impact facility, operating room
and the autopsy room are all in close proximity in the biomedical laboratory.
This arrangement made it very convenient to move the animal from one area to
another throughout the test sequence. A hospital type Picker radiegraphic
unit with a capacity of 300 MA and 140 KvP was available for radiographic uses,

The animal was fully anesthetized, shaved and targeted for high speed
photographic analysis. The animal was then taken to the impact room where
respiratory rate and reflex state were recorded. Complete anthropometric
measurements were taken for each test animal. The test animal was seated
for the impact tests on a bench type seat and supported by surgical thread
through the ears. This method of support makes the animal essentfally a free
body. It was found to provide reproducible results and eliminated the
complicated boundary conditions of a restraint seat or sling.

A1l impacts were carried out by a pneumatically operated testing machine
specially constructed for impact studies. The machine consists of an air
reservafr and a ground and honed cylinder with two carefully fittad pistons.
The transfer piston is propelled by compressed air through the cylinder
and transfers its momentum to the impact piston. A striker plate attached
to the impact piston travels a distance of three to six inches and an inversion
tube absorbs the energy of the impact piston and halts its movement after impact.

The stroke of the impactor was precisely controlled by fts inftial
position, and its velocity was controlled by the reservoir pressure. The
impactor was instrumented with an accelerometer and an inertia-compensated

force transducer. High speed motion pictures (3000 fps) were taken for

photometric analysis (Figure 2).
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Fresh, unembalmed cadavers obtained from the Anatomy Department of The
University of Michigan Medical School were used in this study. Each cadaver
was stored at 37" F for one to seven days betwean time of death and impact.
The specimens were then transported to HSRI and allowed to reach room temperature
before testing. These procedures insured that the effects of rigor mortis
had disappeared and that the blood was again fluid.
2.2.1 Padded Head Impacts

2.2.1.1 Sub-human Primate Head Impact Study

A Wilcoxon biaxial accelerometer was used to record head accelerations
for the sub-human primate study. The accelerometers were glued to the skull
with Eastman-910 at a point directly opposite the point of impact (Figure 3).

Based on the MSC tolerance.curves obtained fn the 1971 DCC report, a
series of long duration head impacts was conducted. The shortest pulse durations
in the constant acceleration portion of the MSC curve were selected as the
desired pulse duration for this set of head impacts. These are indicated by
a triangle at the appropriate point on each curve in Figure 4.

The pulse duration was controlled by using different kinds of padding
on the fmpactor. Polystyrene cellular plastics of three material densities
(1.0, 3.4 and 1.2 pounds per cubic foot) were used as padding. Different
levels of injury were obtained by varying the impact velocity for a particular
pulse duration.

The test animal was placed with its head a predetermined distance from
the Impactor so as to allow fer the proper crush distance of the padding
material without overextending the neck during impact (Figure 5). The weight
of the impactor used in this study was 22 pounds, approximately five times

the head weight of the largest monkey used. This was designed to insure
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FIGURE 3, ACCELEROMETER MOUTING FOR HEAD IMPACTS
1
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PRIMATE SIDE HEAD IMPACT SET-
UP (RHESUS SHOWN).
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that the impactor did not slow down significantly when 1t struck the primate's
head. The force-time plots and acceleration-time plots were recorded on a
1ight beam oscillograph. The high speed movies of each test were analyzed

and processed on a Vanguard film analyzer. Computer assisted differentiation
and smoothing techniques were used to determine the angular veloeity and
acceleration of each head impact.

2.2.1,2 Human Cadaver Head Impact Study

The point of impact was the 1eft temporal region, two inches superior
to the external acoustic meatus. Photographic targets for L-R head impacts
were secured to the supra-orbital ridge, two inches on either side of the
glabella (1.e., two inches either side of the mid-sagittal plane).

A biaxial accelerometer was mounted on a screw, which was driven into
the skull at a point directly opposite the point of impact. Care was taken
so that the accelerometer axes were normal and parallel to the impacting
surface, not to the skull (Figure 6). The class 1000 frequency response value
was used for all head accelerations as recommended by Jd21l.

After being targeted and eguipped with accelerometers, the cadaver was
placed in a chair, which was modified for this impact study. A1l surfaces
the cadaver could come in contact with in its post-impact movements were
thickly padded with styrofoam to prevent damage to the cadaver. A special
foam apparatus was employed to absorb the energy of the head and to protect
the accelerometers from damaoe.

The cadaver was carefully positioned so that 1ts head was in the correct
position relative to the impactor and at the same time the whole cadaver was

allowed to act as a free body. The head was suspended and held in place by

14
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surgical thread. This thread supported only the waight of the head and
broke easily on impact (Figure 7). The impacts were carried out in the HSRI
Impact Facility described in the animal test set-up section of this report.
The same polystyrene plastic materials used in the animal study were used
in the cadaver study to obtain a wide range of pulse durations. The impact
velocity as well as the polystyrene materials were varied to give a wide
range and combination of accelerations and pulse duration impacts. Pulse
durations of up to 20 msec were needed to make these human head impacts -
comparable to those of the monkeys.

2.2.2 Torso Impacts

The thorax and abdominal body areas were divided into three major
{mpact regions. PRegion I consisted of the thorax as located between the jugular
notch of the sternum and the diaphragm. Region IT was defined as including
the arsa between the diaphragm (9th rib) and a horizontal plane transisting
the abdomen along the inferior margin of the 1iver and stomach, and lecated
approximately 1-3 cm superinr to the umbilicus on the surface. Regjon III
included the entire thorax and abdominal area, from the jugular notch to the
11iac crest. A1l body impacts to Regfon 1 were carried out midway between
the superior mediastinum and the diaphragm. A1l impacts were
carried out with the axis of the jmpactor in the transverse plane.
Impacts to Region III included all of Regien III. A1l of these points were
located as accurately as possible on sub-human primates before each test.
The body regions are illustrated for the left and right side views in Figures
B and 9.

A1l impacts made to Regions I and Il used a 22-pound impactor with a
scaled arm rest for cﬁntatt1ng syrface. This contacting surface was made from a

5 1bfft3 high density polyethylene foam to distribute the contact load. The

16
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scaled arm rest was replaced by a scaled flat rigid plate for all impacts .
to Region III.
2.2.2.1 Sub-Human Primate Impacts

The anfmals were positioned to 1imit the depth of penetration between
35% and 60% of body width, and a one-foot thick soft foam pad was arranged
to prevent injury after impact.

Tha same testing procedure was used for each test sequence. The animal
was fmpacted on the right side, and the injury evaluated. If the injury was
not serfous, then the next animal was fmpacted at a higher velocity. This
procedure was continued until a serious injury was obtained. The next sequence
of impacts was on the left side of the region completed (Figure 10).

The engineering parameters recorded for each test were force-time
histories from an oscilloscope trace, depth of penetration
from the photographic record, and velocity from an electronic chromometer.
2.2.2.2 Human Cadaver Impacts

The cadavers were positioned in a heavily padded chair with no side
supports. The test subject was held in an upright pesition by a harness
under the arms, which was in turn fastened to a s1iding mechanism over the
chair. This support system was found to allow the cadaver to behave as a
free body on impact, and still produce repeatable results (Figure 11). A
2" x 2" target for determining depth of penetration was fixed to the cadaver's
side at.a point directly opposite the point of impact. A1) cadaver thoracic
{mpacts were made with the impactor centered over the 6th rib.

Two types of impactor heads were used in this study. One was a six-inch
diameter rigid flat plate with 0.5 inch radius edges. The other head was
a simulated arm rest made from the polyethylene material used 1n the animal

study.

20




FURE 10. PRIMATE SIDE TORSO IMPACT SET-UP
(BABOON SHOWN)
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The weight of the impactor used in all tests was 22 pounds. This impactor
weight was found to give a constant velocity impact up to three inches of
penetration. S5ix side thoracic impacts were made with each head at two
velocities, The depth of penetration was preset for any desired value between
1.8 inches and 3.8 inches.

2.2,3 Drect Organ Impacts

The purpose of this experiment was to guantitatively describe the relation-
ship between impact parameters (energy. organ penetration, pressure, and
impact velocity} and injury to exposed organs. The two organs studied were
the liver and kidney because clinical experjence indicates that these organs
are most freguently injured in side impacts.

The organ to be tested was surgically mobilized in an anesthetized
Rhesus monkey, The organ was lafd onto a small load cell while still being
perfused by the 1iving animal (Figure 12}. Load deflection curves were
obtained for each impact. Impact velocity and depth of penetration were
varied in turn to yield injuries of various severity levels.

The testing machine used in this study to provide both static and
dynamic test data was the Plastechon High-Speed testing machine. This
machine s an electrohydraulic servo-controlled unit with static Toad
capacities of 3,000 and 12,000 1bs and a stroke of 11 inches. The ram velocity
can be varied from a static rate of about 10 inches per minute, to a maximum
servo-controlled rate of 12,000 inches per minute at the low load and 3000 inches
per minute at the higher load rating. The maximum open loop rates are 30,000
and 12,000 inches per minute respectively.

The load cell used in the tests was a Kistler 933A Piezoelectric force
1ink. This cell has a resenant frequency of 40KHz and compression lpad

capacity of 6000 pounds. The ram displacement was measured by a Physitech

Gage-It Optical Extensometer. The resulting data was recorded on storage
23
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oscilloscopes in two forms: organ load and ram displacement versus time

and organ load versus ram displacement. Photographs of the oscilloscope traces
were taken as a permanent record.

2.2.4 Thoracic Mechanical Impedance

The design of protective devices for humans subjected to an impact or
a vibrational environment requires a knowledge of their mechanical behavior
i1 such environments. Consequently, much effort has been devoted to the
concept of treating the human body as a mechanical system and cataloging the
system response to mechanical energy transfer from the surrounding environment
and 1ts distribution throughout the system.

The overall mechanical response of man, or of a sub-system of man, is
perhaps best characterized by its driving point mechanical impedance, defined
as the ratio of driving force to velocity, which can be used to determine
the energy transfer between environment and man for a known excitation.
Impedance techniques thus have a two-fold purpose 1in biomechanical response:
to model the body or sub-system of the body as a mechanical system and to
minimize energy transfer in the design of isolation systems.

Each monkey used in this study was anesthetized with 25 ma/kgm I.V.
of Sodium Pentobarbitol. A six-millimeter circular hole for squirrel monkeys.
a ten-millimeter circular hole for Rhesus, and a 15-millimeter circular hole
for the baboon was cut in the test subject's thorax between the 4th and 5th
rib on the side to be tested. An adapter was then attached to the rib cage
as shown in Figure 13. The space between the rib cage and the adapter was
then sealed to prevent any more air from entering the jnterpleural space. A
hypodermic needle was then inserted into the interpleural space and the trapped
air withdrawn by a syringe. The 1iving monkey's thorax was then attached to

the platen of a 300-pound electromagnetic shaker, and the rest of the body
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was supported in a sling (Figure 14). The shaker servo-controller was set to
apply a sinusoidal force to the thorax over the frequency range 5 to 100 Haz.

A sweap oscillator was used to drive the shaker system while a mass cancelling
automatic on-1ine impedance computer converted the force-time and acceleration-
time information into plots of phase and impedance versus freguency. A one
gram piezoelectric accelerometer with a low frequency response of one Hertz
and a high frequency response to 1800 Hertz was attached to the fourth rib on
the opposite side of the thorax from the shaker attachment. The acceleration
was then recorded for the same frequency range used for the driving-point test.
Runs were made at force levels ©f 50 and 100 pounds for the baboon, at 25
and 50 pounds for the Rhesus, and 5 to 10 pounds for the squirrel monkey.
Driving-point and transfer point accelerations were recorded for each run.

A11 monkeys survived the test and showed no injuries other than those caused
by the surgery for attachment to the shaker.

The cadaver mechanical impedance tests were conducted in a manner similar
to those of the monkey study. The load adapter used in the human cadaver study
was 22 millimeters and the applied lcads of 50 and 100 pounds, The accelera-
tions on the opposite side of the chest were also recorded.

2.3 BIOMEDICAL DATA COLLECTION

Gross autopsy was conducted in the Autopsy Laboratory, specially
equipped for dissection. Autopsies were conducted as a blind, according to
accepted research procedure, with the investigator conducting the gross
autopsy having no knowledge of physical data on the intensity, location of
impact, or circumstances of each test. Careful anatomical dissection of the
head, face and neck tissues, where head impacts occurred allowed discrete

identification of many sites of vascular faflure. MWhen gross traums was found
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The radiographic laboratory, vivarium, impact facility, operating room
and the autopsy room are all in close proximity in the biomedical laboratory.
This arrangement made it very convenient to move the animal from one area to
another throughout the test sequence. A hospital type Picker radiographic
unit with a capacity of 300 MA and 140 KvP was available for radiographic uses.

The animal was fully anesthetized, shaved and targeted for high speed
photographic analysis. The animal was then taken to the impact room where
respiratory rate and reflex state were recorded. Complete anthropometric
measurements were taken for each test animal. The test animal was seated
for the impact tests on a bench type seat and supported by surgical thread
through the ears. This method of support makes the animal essentially a free
body. It was found to provide reproducible results and eliminated the
complicated boundary conditions of a restraint seat or sling.

A1l impacts were carried out by a pneumatically operated testing machine
specially constructed for impact studies. The machine consists of an air
reservoir and a ground and honed cylinder with two carefully fitted pistons.
The transfer piston is propelled by compressed air through the cylinder
and transfers its momentum to the impact piston. A striker plate attached
to the impact piston travels a distance of three to six inches and an inversion
tube absorbs the energy of the impact piston and halts its movement after impact.

The stroke of the impactor was precisely controlled by its initial
position, and its velocity was controlled by the reservoir pressure. The
impactor was instrumented with an accelerometer and an inertia-compensated
force transducer. High speed motion pictures (3000 fps) were taken for

photometric analysis (Figure 2).



ALITIOVY 1OVdNI QV3IH JO WYYIVIQ %20719°C J3NOI

WSINVHIIW ONIWiL
GNV AlddNS ¥IMOd

-~ VEIWY)
! a33dS HOIN
o~
1 +— ”»>—— .
HJLIMS ﬁo_ i
oONtwig L~ ] \
_ i T
SR—| -
NOLSId NOLSI¢ 13190v4
SAIONI10S WH4SNVYNL Aovewi ) i
WSINVHIIW 1uavse
MY = =1 ISV
YIOANISIN NIV v
TYNOIS IYNOIS
XO8 ¥113WO¥113DV 35¥04
NOHVITIINYD  J
ssYw
— . ]
_ <=
! e
T
» !
_//- | A? IlA‘lll.
| O |
3402501117$0 Alddns suaLd SUIINIWY

WIMOd SSVd MO 2% I1DWVHI



Fresh, unembalmed cadavers obtained from the Anatomy Department of The
University of Michigan Medical School were used in this study. Each cadaver
was stored at 37° F for one to seven days between time of death and impact.
The specimens were then transported to HSRI and allowed to reach room temperature
before testing. These procedures insured that the effects of rigor mortis
had disappeared and that the blood was again fluid.
2.2.1 Padded Head Impacts

2.2.1.1 Sub-human Primate Head Impact Study

A Wilcoxon biaxial accelerometer was used to record head accelerations
for the sub-human primate study. The accelerometers were glued to the skull
with Eastman-910 at a point directly opposite the point of impact (Figure 3).

Based on the MSC tolerance.curves obtained in the 1971 DCC report, a
series of long duration head impacts was conducted. The shortest pulse durations
in the constant acceleration portion of the MSC curve were selected as the
desired pulse duration for this set of head impacts. These are indicated by
a triangle at the appropriate point on each curve in Figure 4.

The pulse duration was controlled by using different kinds of padding
on the impactor. Polystyrene cellular plastics of three material densities
(1.0, 3.4 and 1.2 pounds per cubic foot) were used as padding. Different
levels of injury were obtained by varying the impact velocity for a particular
pulse duration.

The test animal was placed with its head a predetermined distance from
the impactor so as to allow for the proper crush distance of the padding
material without overextending the neck during impact (Figure 5). The weight
of the impactor used in this study was 22 pounds, approximately five times

the head weight of the largest monkey used. This was designed to insure
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that the impactor did not slow down significantly when it struck the primate's
head. The force-time plots and acceleration-time plots were recorded on a
light beam oscillograph. The high speed movies of each test were analyzed
and processed on a Vanguard film analyzer. Computer assisted differentiation
and smoothing techniques were used to determine the angular velocity and
acceleration of each head impact.

2.2.1.2 Human Cadaver Head Impact Study

The point of impact was the left temporal region, two inches superior
to the external acoustic meatus. Photographic targets for L-R head impacts
were secured to the supra-orbital ridge, two inches on either side of the
glabella (i.e., two inches either side of the mid-sagittal plane).

A biaxial accelerometer was mounted on a screw, which was driven into
the skull at a point directly opposite the point of impact. Care was taken
so that the accelerometer axes were normal and parallel to the impacting
surface, not to the skull (Figure 6). The class 1000 frequency response value
was used for all head accelerations as recommended by J211.

After being targeted and equipped with accelerometers, the cadaver was
placed in a chair, which was modified for this impact study. A1l surfaces
the cadaver could come in contact with in its post-impact movements were
thickly padded with styrofoam to prevent damage to the cadaver. A special
foam apparatus was employed to absorb the energy of the head and to protect
the accelerometers from damage.

The cadaver was carefully positioned so that its head was in the correct
position relative to the impactor and at the same time the whole cadaver was

allowed to act as a free body. The head was suspended and held in place by
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surgical thread. This thread supported only the weight of the head and
broke easily on impact (Figure 7). The impacts were carried out in the HSRI
Impact Facility described in the animal test set-up section of this report.

The same polystyrene plastic materials used in the animal study were used
in the cadaver study to obtain a wide range of pulse durations. The impact
velocity as well as the polystyrene materials were varied to give a wide
range and combination of accelerations and pulse duration impacts. Pulse
durations of up to 20 msec were needed to make these human head impacts
comparable to those of the monkeys.

2.2.2 Torso Impacts

The thorax and abdominal body areas were divided into three major
impact regions. Region I consisted of the thorax as located between the jugular
notch of the sternum and the diaphragm. Region Il was defined as including
the area between the diaphragm (9th rib) and a horizontal plane transisting
the abdomen along the inferior margin of the liver and stomach, and located
approximately 1-3 cm superior to the umbilicus on the surface. Region III
included the entire thorax and abdominal area, from the jugular notch to the
jliac crest. A1l body impacts to Region I were carried out midway between
the superior mediastinum and the diaphragm. A1l impacts were
carried out with the axis of the impactor in the transverse plane.
Impacts to Region IIT included all of Region III. Al11 of these points were
located as accurately as possible on sub-human primates before each test.
The body regions are illustrated for the left and right side views in Figures
8 and 9.

A1l impacts made to Regions I and II used a 22-pound impactor with a
scaled arm rest for contacting surface. This contacting surface was made from a

9 lb/ft3 high density polyethylene foam to distribute the contact Toad. The
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scaled arm rest was replaced by a scaled flat rigid plate for all impacts
to Region III.
2.2.2.1 Sub-Human Primate Impacts

The animals were positioned to 1imit the depth of penetration between
35% and 60% of body width, and a one-foot thick soft foam pad was arranged
to prevent injury after impact.

The same testing procedure was used for each test sequence. The animal
was impacted on the right side, and the injury evaluated. If the injury was
not serious, then the next animal was impacted at a higher velocity. This
procedure was continued until a serious injury was obtained. The next sequence
of impacts was on the left side of the region completed (Figure 10).

The engineering parameters recorded for each test were force-time
histories from an oscilloscope trace, depth of penetration
from the photographic record, and velocity from an electronic chromometer,
2.2.2.2 Human Cadaver Impacts

The cadavers were positioned in a heavily padded chair with no side
supports. The test subject was held in an upright position by a harness
under the arms, which was in turn fastened to a sliding mechanism over the
chair. This support system was found to allow the cadaver to behave as a
free body on impact,and sti11 produce repeatable results (Figure 11). A
2" x 2" target for determining depth of penetration was fixed to the cadaver's
side at a point directly opposite the point of impact. A1l cadaver thoracic
impacts were made with the impactor centered over the 6th rib.

Two types of impactor heads were used in this study. One was a six-inch
diameter rigid flat plate with 0.5 inch radius edges. The other head was
a simulated arm rest made from the polyethylene material used in the animal

study.
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The weight of the impactor used in all tests was 22 pounds. This impactor
weight was found to give a constant velocity impact up to three inches of
penetration. Six side thoracic impacts were made with each head at two
velocities. The depth of penetration was preset for any desired value between
1.8 inches and 3.8 inches.

2.2.3 Direct Organ Impacts

The purpose of this experiment was to quantitatively describe the relation-
ship between impact parameters (energy, organ penetration, pressure, and
impact velocity} and injury to exposed organs. The two organs studied were
the Tiver and kidney because clinical experience indicates that these organs
are most frequently injured in side impacts.

The organ to be tested was surgically mobilized in an anesthetized
Rhesus monkey. The organ was laid onto a small Toad cell while still being
perfused by the living animal (Figure 12). Load deflection curves were
obtained for each impact. Impact velocity and depth of penetration were
varied in turn to yield injuries of various severity levels.

The testing machine used in this study to provide both static and
dynamic test data was the Plastechon High-Speed testing machine. This
machine is an electrohydraulic servo-controlled unit with static load
capacities of 3,000 and 12,000 1bs and a stroke of 11 inches. The ram velocity
can be varied from a static rate of about 10 inches per minute, to a maximum
servo-controlled rate of 12,000 inches per minute at the low load and 3000 inches
per minute at the higher load rating. The maximum open loop rates are 30,000
and 12,000 inches per minute respectively.

The load cell used in the tests was a Kistler 933A Piezoelectric force
link. This cell has a resonant frequency of 40KHz and compression load
capacity of 6000 pounds. The ram displacement was measured by a Physitech

Gage-It Optical Extensometer. The resulting data was recorded on storage
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oscilloscopes in two forms: organ load and ram displacement versus time
and organ load versus ram displacement. Photographs of the oscilloscope traces
were taken as a permanent record.

2.2.4 Thoracic Mechanical Impedance

a vibrational environment requires a knowledge of their mechanical behavior
in such environments. Consequently, much effort has been devoted to the
"""""" f treating the human
system response to mechanical energy transfer from the surrounding environment
and its distribution throughout the system.

The overall mechanical response of man, or of a sub-system of man, is
perhaps best characterized by its driving point mechanical impedance, defined
as the ratio of driving force to velocity, which can be used to determine
the energy transfer between environment and man for a known excitation.
Impedance techniques thus have a two-fold purpose in biomechanical response:
to model the body or sub-system of the body as a mechanical system and to
minimize energy transfer in the design of isolation systems.

Fach monkey used in this study was anesthetized with 25 mg/kgm I.V.
of Sodium Pentobarbitol. A six-millimeter circular hole for squirrel monkeys,
a ten-millimeter circular hole for Rhesus, and a 15-millimeter circular hole
for the baboon was cut in the test subject's thorax between the 4th and 5th
rib on the side to be tested. An adapter was then attached to the rib cage
as shown in Figure 13. The space between the rib cage and the adapter was
then sealed to prevent any more air from entering the interpleural space. A
hypodermic needle was then inserted into the interpleural space and the trapped
air withdrawn by a syringe. The living monkey's thorax was then attached to

the platen of a 300-pound electromagnetic shaker, and the rest of the body
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was supported in a sling (Figure 14). The shaker servo-controller was set to
apply a sinusoidal force to the thorax over the frequency range 5 to 100 Hz.

A sweep oscillator was used to drive the shaker system while a mass cancelling
automatic on-line impedance computer converted the force-time and acceleration-
time information into plots of phase and impedance versus frequency. A one
gram piezoelectric accelerometer with a low frequency response of one Hertz

and a high frequency response to 1800 Hertz was attached to the fourth rib on
the opposite side of the thorax from the shaker attachment. The acceleration
was then recorded for the same frequency range used for the driving-point test.
Runs were made at force levels o©of 50 and 100 pounds for the baboon, at 25
and 50 pounds for the Rhesus, and 5 to 10 pounds for the squirrel monkey.
Driving-point and transfer point accelerations were recorded for each run.

A1l monkeys survived the test and showed no injuries other than those caused
by the surgery for attachment to the shaker.

The cadaver mechanical impedance tests were conducted in a manner similar
to those of the monkey study. The load adapter used in the human cadaver study
was 22 millimeters and the applied loads of 50 and 100 pounds. The accelera-
tions on the opposite side of the chest were also recorded.

2.3 BIOMEDICAL DATA COLLECTION

Gross autopsy was conducted in the Autopsy Laboratory, specially
equipped for dissection. Autopsies were conducted as a blind, according to
accepted research procedure, with the investigator conducting the gross
autopsy having no knowledge of physical data on the intensity, location of
impact, or circumstances of each test. Careful anatomical dissection of the
head, face and neck tissues, where head impacts occurred allowed discrete

jdentification of many sites of vascular failure. When gross trauma was found
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it was photographically recorded using a specially modified Pentax camera with
close-up lens, either in situ or as an isolated entity, to provide a permanent
record of the injury.

Tissues were saved from all major organs for further histopathologic exam-
ination. Weights of major organs including the heart, brain, lungs, liver,
spleen, pancreas, adrenals, and kidneys, were obtained. Each autopsy report
includes gross and microscopic pathology, anthropometry, color photographic
documentation of dissections, injuries, and the animal test preparation.
Isoenzyme determinations in the case of larger primates were also made.
Included are all background information relative to the history, case, and any
medication of the particular subject.

It should be noted that no animal carcass was destroyed after autopsy
without making an effort to fully utilize the remains within the Medical
School community. In this connection, some 12 departments received carcass
materials which were of direct benefit to other medical research studies in
progress. Some examples included the testis which were used by the Department
of Gynecology and Obstetrics for hormone studies, thighs by the Department of
Surgery for fascia graft experiments, and other 'discarded' materials were
received by the Human Growth Center, Department of Anatomy, Department of
Ophthalmology, Department of Otorhinolaryngology, Department of Pathology,
Kresge Hearing Research Institute, Department of Anthropology, University of
Michigan Museum, and hands and feet were used for a study of dermatoglyphics
by School of Public Health investigators. Thus, the animal subjects were
optimally utilized in accordance with all animal utilization codes of ethics.

Tissue specimens were prepared in the HSRI Histology Laboratory for

microscopic examination. Fixed in a solution of formalin, the specimens
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were dehydrated with alcohol, cleaned, infiltrated and finally imbedded in
paraffin. The paraffin blocks were placed in the microtome and tissues were
sectioned at a thickness of 5 microns, using an A0 Sencer 820 microtome and
mounted on a glass slide. Various stains were used, but in the case of brain
tissue some slides for each subject were prepared with Gallocyamin stain for
Niss1 substance, since early dissolution of Nissl substance has been found
to occur subsequent to nerve cell injury.

Microscopic examination and study of the tissue preparations was
accomplished with an AQ Spencer Series 10 microscope using 4X, 10X and
45X objectives with trinocular body, which permits the use of a Pentax H/a
camera for microphotography. Histopathology was evaluated by specialists
from the university school of medicine. As a further check on interpretation,
selected brain tissues were submitted for evaluation by two additional path-
ologists experienced in infra-human brain pathology. Dr. Trollope of the
section of general surgery of The University of Michigan Medical Center aided
in evaluation of all thoracic and abdominal injuries. A difference in
histopathology observations of the brain and other organs as well as
interpretation is not unusual among pathologists, and the submission of
critical tissue specimens to more than one pathologist without the
knowledge of the others was intended as a check to decrease the chances of
missing any pertinent pathology, as well as to alert us to any specific
cases where there might be a difference of opinion as to interpretation of
pathology. A similar procedure was also followed in the final interpretation
of injury severity related to both gross and microscopic findings, with
separate ratings made by two researchers experienced in infra-human primate
injury investigations. Interpretations and scoring were consistently within

1/2 scaling point out of 5, giving considerable confidence to our final scaling
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design. The following Estimated Severity of Injury (ESI) was used to rate the
injury of all test animals.
0. No_Injury - No treatment required

1. Minor Injury - Requires no hospitalization

. Mild Injury - May require hospitalization

2
3. Serious Injury - Reversible trauma only
4

. Severe Injury - Non-reversible trauma, life threatening

5. Fatal

The post impact injury evaluation of the human cadavers was conducted
in a quite different manner. After the impact, the cadaver was sent to the
Anatomy Department where it was embalmed by a special technique whereby brain
damage could be assessed. This technique consists of injecting a solution
containing red lead into the circulatory system, which then stains the tissue
where blood vessels have hemorrhaged. The circulatory system was held under
fluid pressure for several days to insure that all injuries were made visible.
The calvarium was then removed and the brain examined within two weeks of
embalming.

A study duplicating this test procedure with monkeys was initiated in
an effort to enable us to better distinguish the various grades of injuries
to the cadavers. The monkeys were terminated and kept in cold-storage for
three days before impact to simulate the preimpact period for the cadavers.
They were then impacted, taken to the Anatomy Department to be injected
with the same red-lead embalming solution,and held under fluid pressure for
several days. Finally, a necropsy was performed, and the effects of trauma
noted.

Five Rhesus monkeys were used in this test; four were impacted and one

served as a control. Al1 four were impacted at a velocity designed to yield
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an ESI of 3. The results were that two of the four monkeys had ESI ratings
of 2 and one monkey had an ESI of 1. The fourth and control monkeys showed
little or no evidence of trauma, and therefore were assigned ESI's of 0.

Based on the Rhesus monkey study it was believed that some indication
of injury level could be learned from the red lead technique; although the
injury seemed to be less in cadaver monkeys than in live monkeys for similar
impacts. This may be because the vascular system is not pressurized in cadaver

monkeys and hence not as easily ruptured or injured.
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3.0 TEST RESULTS

3.1 RESULTS OF PADDED HEAD IMPACTS

The head injuries evident from the primate autopsies were of several
distinct types. The following injuries were the most significant or most
common types of injuries found in the long duration head impact study.

The contre-coup hemorrhage resulting from the short duration head
impacts reported in the 1971 "Door Crashworthiness Criteria," final report
was seen only once in this study. This injury occurred in a padded impact to
a Rhesus monkey of 3.5 msec. duration using only two inches of soft padding
material. The monkey's head bottomed-out the padding against the impactor
resulting in very high G's for a very short pulse duration.

A second type of injury which was observed in this study is illustrated
in Figure 15. This injury consists of damage to the "Arteries of Internal
Cerebral Hemorrhage" (Arteries of Charcot) which supply blood to the corpus
striatum, internal capsule, and thalamus. The location of the most diffuse
hemorrhaging was the Putamen area of the brain (Figure 16).

This type of closed brain trauma has been reported clinically by
Zulc, 1969; Strich, 1969; and Sano, 1968; and experimentally by Gennarelli in 1972.
It is most commonly found in long duration and rotational impacts. The
mechanism for this type of injury is not well understood.

The most common type of injury seen in this study was failure of
the superior sagittal sinus along a region beginning at the junction of
the occiput with the parietal bones and extending to the crown region (Figure
17). The sagittal sinus is securely attached to the skull through the sagittal
suture, and to the brain by the Falx Cerebri. Because of this tethering
arrangement, any relative motion between the brain and the skull results in

a stretching and possible tearing of the walls of the superior sagittal sinus.
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Other common injuries observed were: hemorrhaging in the medullary
region and about the brain stem; slight subdural and subarachnoid hemorrhaging
throughout the calvarium. The mechanism of these vascular failures appears
to be related to displacement of the brain relative to the skull.

In some cases, particularly the very high velocity and high acceleration
impacts of the squirrel monkey series, the accelerometer came loose from the
head. In these tests the acceleration values were then obtained from the
high speed motion pictures.

The mechanical parameters for the head impacts to the infra-human
primates are given in Table 1. Also included are the anatomical measurements.

The results of the cadaver padded impactor head impacts study indicate
that the staining technique described in the experimental method section
was not sensitive enough to evaluate anything other than the most severe
jmpacts. This was believed to be due to the lack of blood pressure in the
vascular system. A1l head impacts, except for two, showed no injury. One
showed definite signs of vascular damage on the surface of the brain opposite
the side of impact. A broken neck and possible vascular damage to the
brain was found in another impact. The data from all of the cadaver head
impacts are given in Table 2. The force-time curve for each impact is
given in Figure 18. The head resultant accelerations, as determined either
from the head accelerometers or photometric analysis, are given in
Figures 19 and 20.

3.2 RESULTS OF THORACIC IMPACTS

Typical injuries observed in this series of impacts are Tisted below
in the order of most frequent occurence. Petechial hemorrhage of the lung,
massive hemorrhage to the tip of the lung as well as occasional tears to

lung tissues were seen most frequently. Examples of injuries of these types
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are shown in Figure 21. Ruptures of the heart were found in two cases.
These ruptures occurred at the bifurcation of the heart and blood vessels.
An example of one such injury is shown in Figure 22. This rupture
occurred where the superior vena cava attaches to the right atrium and
probably occurred when the impact coincided with the filling cycle of the
atrium,

Liver injuries were frequently found in the area of the falciforn
ligament. In each case the liver itself was not impacted directly but
pulled in such a way to cause tears around the ligament attachments. The
results for the primate study are given in Table 3.

The cadaver chest impacts indicated that rib fractures would occur
for penetrations greater than 2.40 inches for the age group of cadavers
tested. In one case, a 16 year old youth was impacted to a penetration
depth of approximately four inches without rib fracture. The results for
the human cadaver impacts are given in Table 4 with the load-deflection
curves for the flat impactor given in Figure 23. The results of the simulated
arm rest impacts are given in Figure 24. The load-deflection curves for
three consecutive impacts to the 16 year ol1d cadaver are given in Figure 25.

Impacts with the flat impactor show an inertial spike followed by
a falling off of load as the deflection increases. By contrast, the
simulated arm rest impacts build up load as the displacement increases.
This build up of load for the simulated arm rest is produced as the (roughly
triangular shaped) arm rest penetrates the body, its area of contact increases
thus increasing the load.
3.3 RESULTS OF ABDOMINAL IMPACTS

Impacts to the abdomens of infra-human primates resulted in injuries to

the liver (primarily fractures, sub-capsular hemorrhaging and tears (Figure 26).
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The kidneys were commonly involved in these impacts with hemorrhaging
throughout the organ. The pancreas was injured in most severe abdominal
impacts with contusions to the surface as well as rupturing of the pancreatic
duct. The stomach, colon, and jejunum were bruised slightly in most impacts.
Injuries to the spleen were considerably less common and less severe than
would be expected from clinical experience. This is thought to be due to
the greater mobility of the spleen in the monkeys relative to that of the
humans.

In most cases the injuries were the result of direct impact over the
organ location. A difference in tolerance for right and left side impacts
was noted and is thought to be due to the asymmetry of the abdominal cavity.
The results of all abdominal impacts are shown in Table 5.

3.4 RESULTS OF WHOLE BODY IMPACTS

The whole body impacts resulted in a combination of injuries obtained
in the chest and abdominal impacts. The most significant injuries were
found to be to the liver, kidney and lungs. The pancreas was involved in
most of the severe impacts.

The contact force was found to be on the average higher than that
necessary to cause a comparable ESI injury in an abdominal impact. The
percent penetration for equivalent injuries was found to be much less in
the whole body impacts than in the abdominal impacts. The results of the
whole body impacts are given in Table 6.

3.5 RESULTS OF DIRECT ORGAN IMPACTS

The 6000 ipm (8,3 fps) and the 12000ipm (16.6 fps) impacts tended to
cause subcapsular hemorrhaging, tears, and fractures. Static loading tended
to crush the parenchyma while the capsule remained intact.

A typical force-deflection curve for a liver impact is shown in Figure 27.
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The specimen height, force and deflection are read directly from this
oscilloscope trace. The force was normalized by the impactor cross-

2 for the Tiver and 1.18 in% for the kid-

sectional area which was 1.77 1in
ney. The deflection was then normalized by the specimen height. Typical
normalized force (stress) and deflection (strain) curves for static,

6000 ipm and 12000 ipm loading rates are shown for liver tissue in Figure

28. The maximum average stress and strain as well as the strain energy
density (that is, the area under the stress-strain curve) was computed for

the region loading up to failure.

In the kidney impacts, outright fracture of the renal capsule was
observed only once. Most of the injuries were internal to the renal cortex.
The kidney was found to have a higher tolerance to impact than the liver.

The results for the liver and kidney impacts are given in Table 7.
3.6 RESULTS OF CHEST MECHANICAL IMPEDANCE TESTS

The results of the driving point impedance response for the chest
of three monkeys and one human are given in Figure 29. 1In each test the
driving point impedance response was found to be quite similar to the
response of a pure damper. The impedance was independent of frequency and the
force was very nearly in phase with the velocity.

The acceleration as a function of frequency for the side opposite the
driving point is shown in Figure 30. The input acceleration at the driving
point was 10 G's,

Over the acceleration range studied, (10 G's to 20 G's), no dependency was

found between the impedance and the input acceleration.
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TABLE 7 SUMMARY OF DIRECT ORGAN IMPACTS

Organ Impact Max. Averagex Max. Average* Strain Energy Modulus of Estimated
Type Velocity Stress Strain Density Elasticity Severity
in/min psi in/in in-1b/in3 psi Index
Liver Static 21.47 .541 4.28 55.6 3-4
Liver Static 33.90 .533 8.53 67.4 5
Liver Static 50.85 .569 11.66 115.8 5+
Liver Static 50.70 .443 8.80 148.2 5
Liver 6000 44,07 .354 5.42 196.7 2
Liver 6000 44,00 .383 6.78 115.1 2
Liver 6000 45,20 .570 12.30 150.0 3
Liver 6000 44.00 .550 10.83 102.6 3
Liver 6000 46.32 .414 9.85 152.4 3
Liver 6000 53.67 .523 15.13 102.6 4
Liver 6000 59.32 .510 26,38 137.9 5+
Liver 12000 36.72 .416 6.00 126.6 0-1
Liver 12000 33.90 .378 6.41 89.7 1-2
Liver 12000 45,20 .438 8.78 150.7 3
Liver 12000 76.84 .500 13.28 205.4 4
Liver 12000 67.80 .480 13.50 222.2 4-5
Liver 12000 98.87 .470 17.81 299.6 5
Kidney Static 46.61 .280 5.29 443.9 0-1
Kidney 6000 152.54 .410 31.52 994.1 4
Kidney 6000 145.76 .380 16.35 694.4 2-3
Kidney 12000 152.54 .444 27.39 950.0 4-5
Kidney 12000 139.83 .333 18.28 842.4 1-2

* These are the peak values that the average stress and strain reached in each
test.
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4.0 PRIMATE SCALING

4.1 HEAD INJURY SCALING

The head contact force, duration of impact, head angular acceleration,
linear acceleration and velocity were obtained for each side impact. The
values of these parameters to be used in the scaling relationships were taken
from tests where the animal received an injury considered to be just below
life-threatening or approximately 3 on the ESI scale. If no ESI of 3 was
obtained from the tests, the engineering parameters were obtained by extrapo-
lating between ESI's of 2 and 4.

The head mass, brain mass, average skull radius and average skull thick-
ness for each test animal in a particular species group were reported as average
values for that species.

Previous work by McElhaney (1970) on the mechanical properties of bone,
scalp and brain indicated that there is very little difference, if any, in
the material properties of these tissues for primates. On the basis of this
work, it was assumed that the material properties of scalp, brain, and bone
were the same for all animals tested and that the results could be extrapolated
to man.

For each of the species studied, the average values of the physical
properties, force time profi]eg and the resulting mechanical responses
needed to produce a desired injury level were obtained. The extrapolation
to man was then made by scaling relationships developed by dimensional analysis
techniques.

The extrapolated tolerable acceleration and pulse duration for human
padded impacts was compared to the Maximum Strain Criterion developed for

side head impacts in the 1971 "Door Crashworthiness Criteria."
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Considering the variables A, 1, V, a, h, where

A = linear head acceleration (ft/sec?2)

1 = acceleration pulse duration (msec)
V = velocity of Impact (ft/sec)
a = average skull radius (in)

h

average skull thickness (in)

Assuming that n, a dimensionless quantity, is a function of these
variables.

= f(V, A, 1, a, h) (1)
Then, from Buckingham's Theorem of Dimensional Analysis, Equation 1 (Langhear,
1951) can be written as follows:

= flny, mp, m3) (2)

where m1, m,, m3 are dimensionless quantities of the form

mTh (3)
To = _x_'l.' (4)
"3 T 7975' (5)

The dimensionless variable a/h was weighted by multiplying it by
the brain weight of each species tested. This species dependent term m;*
was then plotted against each of the remaining dimensionless variables.

The scaling parameter =;* was plotted against the dimensionless variable
n, for each species represented (Figure 31). From this plot the value of
m, was found for humans by extrapolation. The pulse duration of 20 msec
was used in the evaluation of w, as predicted by the MSC curve for humans.
This yields a tolerable rigid impact velocity of 15 mph and a tolerable

padded impact velocity of 29.5 mph for the human head when impacted to the
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side of the head.

The scaling parameter m* was plotted against the dimensionless
variable w3 for each species (Figure 32). From this plot the value of =3
was found for humans. Knowing h and V from Figure 31 the tolerable acceleration
for padded side head impacts was found to be 76 G's. This compared with
56 G's for rigid head impacts as reported in the 1971 "Door Crashworthiness
Criteria" Report.

The ninth and tenth cadaver padded head impacts yielded accelerations
and impact velocities very close to the predicted tolerance levels from the
extrapolated monkey data. The head autopsy indicated no gross trauma
to the skull, neck or brain. The head contact forces for these two impacts
were approximately 200 pounds, with angular accelerations and velocities of
approximately 8,200 rad/sec2 and 70 rad/sec respectively.

The scaling parameters used in the extrapolation to man and the resulting
human parameters derived from the scaling are given in Table 8.

The Maximum Strain Criteria as developed for the 1971 "Door Crashworthiness
Criteria" report has been modified to take force as well as acceleration as
an input parameter. This modification enables force to be inputted at the
contact point for direct impacts and accelerations for the no impact case.

The model response in both cases is based on the resultant acceleration of the
center of gravity.

The MSC head injury criterion of 0.0061 in/in derived in the 1971 "Door
Crashworthiness Criteria" report was used to predict human head tolerance for
long pulse duration. The results of the experimental extrapolation and the
MSC model are shown in Figure 33. This prediction was based on the extrapolation

to man of the engineering parameter found to have high correlation with head

injuries in monkeys.
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4.2 THORACIC INJURY SCALING

There have been several possible indicators suggested for predicting chest
injuries, acceleration, force and displacement, to name a few. Use of acceleration
as an indicator becomes very awkward because of the different accelerations encountered
throughout the chest during impact. The use of force as an indicator can also be-
come cumbersome because of its dependence on the weight of the upper torso. Since
most chest injuries were found to be related to the deflections of the rib cage,
chest displacement was chosen for this study as the indicator for thoracic injury.
The chest displacement was normalized by dividing it by the chest breadth. There-
fore, the ESI could be plotted against the percent chest penetration. \lhen this
was done for each species studied, no apparent correlation was found. An aspect
rat1o defined, as breadth divided by the depth of the chest, was calculated for
each animal species. It was then noted that this quantity was inversely related to
ordering of ESI versus penetration relationships. Therefore, each percent pene-
tration value was multiplied by the aspect ratio to yield an Effective Percent
Penetration versus ESI relationship (Figure 34). This relationship now groups
all the various species tested into a narrow band independent of the species type.
Extrapolation to man was then made by using the Effective Percent Penetration for
an ESI of three. This yields an actual percent penetration of 31% and an actual
penetration of 2.65 inches based on the average chest depth of 8.5 inches and
aspect ratio of 1.45 for twelve cadaver impacts.

Based on the cadaver impacts, rib fracture did not occur on the average for
impact velocities of 14 mph and penetrations of 2.1 inches. When the velocity
of impact was raised to 20 mph and the penetration increased to 3.0 inches, rib
fracture did occur. This was for a group of cadavers whose average age at the time
of death was 58 years. It should be noted that for the 16 year old youth, rib
fracture did not occur for penetrations of up to approximately four inches. Any

internal injuries will be reported at a future date after a detailed autopsy is

formed.
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Therefore, based on the animal scaling and the cadaver chest impacts,
an impact of 21 mph velocity with 2.65 inches of deflection could result in
a force of 900 pounds, a pulse duration of 25 msec, and an injury level of
three to the human chest from either the right or left side. See Figure 23.
4.3 ABDOMINAL INJURY SCALING

The results of the simulated arm rest impact to region II are summarized
in Figure 35, which shows the average peak contact pressure (computed by
dividing the peak impactor force by themaximum projected impactor contact
area) versus the ESI. For an ESI of 3, this contact pressure was approximately
31 psi for all species of primates, including humans. If a contact area

of 22.5 in?

is used as the area of impact to humans then a contact force of
700 1b should result in an ESI of 3 to Region II.

A1l of the animal impact data to Region Il was submitted to a computer-
assisted statistical analysis for both positive and negative correlations
between the various parameters and ESI. It was found that the peak force
and pulse duration had a high level of correlation with the ESI. Using this
correlated data, a dimensional analysis study was made to develop a scaling

factor to predict abdominal injury in man.

The scaling factor which was determined is given below:

2
ESI o Log =

.

where F = Peak contact force
1t = Pulse duration
M = Mass of animal
A = Impactor Contact Area

This scaling factor was originally developed for front abdominal impacts,

which was reported by Stalnaker, et. al. (1972) at the Symposium held at
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General Motors Research Laboratories in Warren, Michigan.

The results of the side abdominal impacts are shown in Figure 36. The
boundaries in this figure represent the upper and lower boundaries of region
IT. The higher the scaling factor, the greater the region's tolerance to
impact.

The velocity of impact can be calculated from this scaling factor.

Using the body weight for an average man (165 pounds),a contact area of 22.5 1n2,
percent penetration of 54%, for right side impacts, the velocity of impact for
right side impact was found to be approximately 20 fps. Using Figure 40 of the
1971 "Door Crashworthiness Criteria" report, the left side impact velocity
required to yield the same percent penetration will be 20% higher than that

for the right, making it approximately 24 fps. The average pulse duration

for this impact would be found to be 28 msec.
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5.0 DISCUSSION AND CONCLUSIONS

The conclusions of this study are based on the accumulated data from
the 1971 "Door Crashworthiness Criteria" report and the data contained in
this report.

1. A padded side head impact of 29.5 mph and an impact pulse duration
of 20 msec to humans will result in a head contact force of 200 pounds,

a resultant linear acceleration of 76 G's, and an ESI of three.

The types of injuries found for the long duration impacts involve brain
stem and internal brain hemorrhaging not directly associated with the impact
location. A1l injuries observed in this study are found clinically.

2. Impacts to the chest resulted in a deflection criteria for evaluating
chest side impacts. A deflection to the right or left side of the chest of
2.65 inches was found to yield an ESI of three. Rib fractures were found
in the older cadavers studied for impact velocities of approximately 19 mph
and deflections of 2.9 inches. In the one case where a 16 year old cadaver
subject was impacted, a penetration of 3.8 inches was obtained with no
rib fractures.

3. In the abdominal study a scaling factor was derived for rating
abdominal injuries. The injury produced by a given force was found to
be a function of the projected contact area, duration of impact, and mass of
the animal. The location of the impact greatly influenced the injury produced.
When the location of impact and mass of the subject are chosen,
the composite function ESI o Log Ft?/ Mﬂﬂj relates well to the degree of
injury produced in a side abdominal impact. Relatively small forces were
required to produce severe injuries of the solid viscera when the impact was
made in the upper abdomen. However, much greater forces were required to

produce comparatively severe injuries when force was applied to the lower
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abdomen. The contact pressure to the abdominal area was found to be

independent of species. It was also found that the tolerance values
for the right side of the abdomen was not necessarily the same for the left.

Table 9 summarizes the abdominal tolerance values for an ESI of three.
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TABLE 9 SUMMARY OF ABDOMINAL TOLERANCE VALUES

Right Side Left Side
Velocity of Impact 20 fps 24 fps
Percent Penetration 54% 60%
Impact Duration 28 msec 28 msec
Force of Impact 700 1bs 700 1bs
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